
SUBMITTED TO: EIGHTH INTERRATIONAL CONFERENCE ON DATA ENGINEERING

Database Recovery Using Redundant Disk Arrays*

Antoine N. Mourad t

W. Kent Fuchs

Daniel G. Saab

Center for Reliable and High-Performance Computing

Coordinated Science Laboratory

1101 W. Springfield Ave

University of Illinois

Urbana, Illinois 61801.

June 6, 1991

Abstract

Redundant disk arrays provide a way for achieving rapid recovery from media fail-

ures with a relatively low storage cost for large scale database systems requiring high

availability. In this paper we propose a method for using redundant disk arrays to

support rapid recovery from system crashes and transaction aborts in addition to their

role in providing media failure recovery. A twin page scheme is used to store the par-

ity information in the array so that the time for transaction commit processing is not

degraded. Using an analytical model, we show that the proposed method achieves a

significant increase in the throughput of database systems using redundant disk arrays

by reducing the number of recovery operations needed to maintain the consistency of

the database.

!_,[,y_'r_ A._T _I_,K A_AY,S (illinois Univ) D

N92-257,_9

UriC] ::_s

S 31 _,'? 0OV3_0

"This research was supported in part by the National Aeronautics and Space Administration (NASA) under
Contract NAG 1-613 and in part by the Department of the Navy and managed by the Office of the Chief of Naval
Research under Gra_at N00014-91-:I-1283.

tPh. (217) 244-7180, Fax (217) 244-5686, emaih mouradQcrhc.uiuc.edu

1 Introduction

In a database system, rapid recovery may be necessary for restoring the database to a consistent

state after a failure. Several types of failures can occur. The most typical are transaction aborts

which can be due to program errors, deadlocks, or can be user initiated. When a transaction

aborts, the recovery manager has to restore all database pages modified by the transaction to their

previous state. The second type of failure is a system crash. In this case system tables maintained

in main memory are lost. The recovery mechanism has to UNDO all updates made to the database

by transactions that were active when the crash occurred and to REDO modifications performed

by complete transactions and not yet reflected in the database at the time of the crash.

Another type of failure is media failure. One common way to deal with this type of failure is

by periodically generating archive copies of the database and by logging updates to the database

performed by committed transactions between archive copies into a redo log file. When a media

failure occurs the database is reconstructed from the last copy and the log file is used to apply

all updates performed by transactions that committed after the last copy was generated. In such

a case, a media failure causes significant down time and the overhead for recovery is quite high.

For large systems, e.g., with over 50 disks, the mean time to failure (MTTF) of the permanent

storage subsystem can be less than 25 days 1. Mirrored disks have been employed to provide rapid

media recovery [1]. However, disk mirroring incurs a 100% storage overhead which is prohibitive

for many applications. Redundant Disk Array (R.DA) organizations [2, 3] provide an alternative

for maintaining reliable storage. However, even when disk mirroring or RDAs are used, archiving

and redo logging may still be necessary to protect the database against operator errors or system

software design errors.

In this paper, we present a technique that exploits the redundancy in disk arrays to support

recovery from transaction and system failures in addition to providing fast media recovery. This

is achieved by using a twin page scheme for storing the parity information making it possible to

keep the old version of the parity along with the new version. The old version of the parity is used

1Assumin$ an MTTF of 30,000 hours for each disk.

2

to undo updates performed by aborted transactions or by transactions interrupted by a system

failure.

In Sections 2 and 3 we briefly review several techniques for transaction recovery in database sys-

tems and discuss two RDA organizations. In Section 4, we present our database recovery scheme.

The results of our performance analysis are detailed in Section 5. Section 6 presents some conclu-

sions.

2 Recovery Techniques

Recovery algorithms typically use some form of logging or shadowing. In the logging approach

[4], before a new version (a_ter-irnage) of a record or page is written to the database, a copy of

the old version (before-image) is placed into a sequential log file. If a transaction aborts or the

system crashes, the log file is analyzed and the state of the database is restored. In the shadowing

approach the update of a page is placed into a new physical page on disk [5, 6]. The physical pages

containing the old versions are released after all updates of the committing transaction have been

written to disk. One problem with the shadowing approach is dynamic mapping since it requires

maintaining a very large page table which leads to high I/O overhead during normal processing.

Another problem is the disk scrambling effect which decreases the sequentiality of disk accesses.

In describing and in analyzing our method, we will use the following taxonomy of database

recovery algorithms introduced by Ha_rder and Reuter [7]. They classify recovery algorithms with

respect to the following four concepts:

Propagation 2 of updates. The propagation strategy can be ATOMIC in which case any set

of updated pages can be propagated to the database in one atomic action. In the -,ATOMIC case,

propagation of updates can be interrupted by a system crash and database pages are updated-in-

place.

Page replacement. Two policies can be used: the STEAL policy allows pages modified by

2Propagation to the database means that the new version is visible to higher level software. Updates can be

written to disk without being propagated (e.g., shadowing).

uncommitted transactions to be propagated to the database before end-of-transaction (EOT); the

opposite policy is referred to as -_STEAL. No UNDO recovery is necessary with a -_STEAL policy.

EOT processing. Two categories exist: the FORCE discipline requires all pages modified by

a transaction to be propagated before EOT; the opposite discipline is called -_FORCE.

Cheekpointing Schemes. Cheekpointing is used to propagate updates to the database in

order to minimize the number of REDO recovery actions to be performed after a crash. In the

Transaction Oriented Checkpointing (TOC) scheme, a checkpoint is generated at the end of each

transaction. This is equivalent to using the FORCE discipline in EOT-processing. Two other types

of checkpoints can be used: Transaction Consistent Checkpoints (TCC) are generated during quies-

cent periods where no transactions are being processed, Action Consistent Checkpoints (ACC) are

less restrictive and require that no update statements are processed during checkpoint generation.

3 Redundant Disk Arrays

3.1 Data Striping

Stripeddiskarrayshave been proposed and implemented forincreasingthe transferbandwidth in

high performance I/O subsystems [8,9, 10].In order to allowthe use ofa largenumber ofdisksin

such arrayswithout compromising the reliabilityof the I/O subsystem, redundancy issometimes

includedinthe form ofparityinformation[3,10].Pattersonetal.[3]have presentedseveralpossible

organizationsfor Redundant Arrays of InexpensiveDisks (RAID). One interestingorganizationis

RAID with rotatedparityin which blocksof data are interleavedacrossN diskswhile the parity

of the N blocksiswrittenon the N + 1_tdisk.The parityisrotatedover the setof disksin order

to avoid contentionon the paritydisk.Figure 1 shows the arrayorganizationwith four disks.The

organizationallowsboth large(fullstripe)concurrentaccessesor small (individualdisk)accesses.

In thispaper,we concentrateon smallread/writeaccesses.For a smallwriteaccess,the data block

isread from the relevantdiskand modified.To compute the new parity,the old parityhas to be

read,XORed with the new data and XORed with the old data. Then the new data and new parity

can be writtenback to the correspondingdisks.Stonebraker etal.[11]have advocated the use of

4

D3

D1

D4

D9

D2

D7

D10

Figure 1: RAID with rotated parity on four disks.

D00
D10Dll

D20

D21

Figure 2: Parity striping of disk arrays.

a RAID organization to provide high availability in database systems.

3.2 Parity Striping

Gray et al. I2] studied ways of using an architecture such as RAID in on-line transaction processing

(OLTP) systems. They found that because of the nature of I/O requests in OLTP systems, namely a

large number of small accesses, it is not convenient to have several disks servicing the same request.

Hence, the organization shown in Figure 2 was proposed. It is referred to as parity striping. It

consists of reserving an area for parity on each disk and writing data sequentially on each disk

without interleaving. For a group of N + 1 disks, each disk is divided into N + 1 areas one of these

areas on each disk is reserved for parity and the other areas contsdn data. N data areas from N

different disks are grouped together in a parity group and their parity is written on the parity area

of the N + 1_t disk.

4 KDA-Based Recovery

In the remainder of this paper, we consider an I/O subsystem that is a collection of redundant disk

arrays. The organization of the arrays being either parity striping or data striping (RAID with

rotated parity). In the case of data striping we assume that a large striping unit is used in order to

5

ensure that I/O requests will typically be serviced by a single data disk. We also make the following

assumptions: Communication between main memory and the I/O subsystem is performed using

fixed size pages; Database pages are updated in place which implies that propagation is _A TOMIC;

A STEAL policy is used thus allowing modified pages to be propagated before EOT.

4.1 General Description of the Approach

ttDA-based recovery makes use of the parity information present in the disk arrays to undo updates

performed by aborted transactions. However, the parity is not sumcient by itself to undo all updates

performed by an aborted transaction. Updates that cannot be undone using the parity are dealt

with using one of the traditional recovery schemes.

A page parity group is the set of pages that share the same parity page. In the following, unless

there is ambiguity, we will use the term parity group to denote a page parity group. A parity group

can be in one of two states: clean or dirty. A parity group is dirty when one of its data pages has

been modified by a transaction and the modified version has been written back to the database

before the transaction modifying it commits (using the notation of Haerder and Reuter, the page

has been stolen from the buffer). Otherwise the parity group is called clean. Only one modified data

page per parity group can be written back to the database by uncommitted transactions without

UNDO logging. If additional pages in the parity group have been modified and need to be written

back to the database then their before-images must be logged first. A dirty parity group goes back

to the clean state when the transaction that caused it to become dirty commits. Figure 3 shows

the state transition diagram of a parity group. A table in main memory contains the numbers of all

parity groups that are in the dirty state. This table is referred to as the Dirty_Set. It also contains

the number of the data page within the group that caused the group to be in the dirty state and

the number of the parity page holding the updated parity. Only log N bits need to be used to store

the data page number and one bit for the parity page number. The table is used to check whether

a page updated by an active transaction can be written back to disk without UNDO logging.

When a transaction updates a page, that page can be written back to the database without

Transaction T modifies page D_ and D_ is

written back to the database before EOT

T rereferences D_,

modifies it and Di

is written back to

the database

before EOT

TransactionT commits

Figure 3: Statetransitiondiagram of a page paritygroup.

UNDO loggingifitsparitygroup iscleanor ifitsparitygroup isdirtyand the update isfor the

same page that causedthe group to move intothe dirtystate,i.e.,the same page has been updated,

stolenfrom the bufferthen rereferencedby the same transaction,updated and stolenagain from

the bufferbeforeEOT 3.Note that thisdoes not affectthe degreeof concurrencyor interferewith

the lockingpolicyused inthe system. We do not specifywhen a transactioncan or cannot modify

a page. We only specifywhen a modified page can be writtenback to diskwithout UNDO logging.

Ifa singleparitypage isused,then when a group becomes dirtythe old parityinformationhas

to be kept in the paritypage to be able to recoverin case of a transactionfailure.That would

mean that when the transactioncommits, the new parityhas to be recomputed in orderto update

the paritypage. That would requirereadingallthe data pages in the group in order to compute

the new parity.To avoid thatproblem a twin page scheme isused forthe paritypages.The basic

mechanism of the twin page scheme isas follows:one of the paritypages always containsthe valid

parityofthe group while the otherpage containsobsoleteparityinformation.When a data page is

modifiedina paritygroup,the obsoleteparitypage (P forexample) isupdated with the new parity

of the array.Ifthe transactionperforming the update commits then the modified paritypage (P)

becomes the validparitypage otherwisethe other paritypage (P_)remains the validparitypage

and itscontents are used to recoverthe data page that was modified by the failedtransaction.

Figures4 and 5 show the data stripingorganizationand the paritystripingorganizationwhen the

aNormally such an event should not occur often since buffermanagement algorithms are not supposed to replace

a page that will be referenced again in the near future.

7

DO
D3
D6 D7

D10
[°5 t

Dlliii!!!iiiiiiiiiiiiiiiiii i iiiiii ii iii i i i iiii! i

Figure 4: Data striping organization with the twin page scheme for the parity.

DO0

DO1

DIO

Dll D20D21

P30

1"31

Figure 5: Parity striping organization with the twin page scheme for the parity.

twin page scheme is used for the parity. Twin parity pages are denoted Px and Px t in the data

striping case and Pzy and Pzy t, with z -- (x q- 1)mod(N q- 2), in the parity striping case. Figure 6

shows the contents of a parity group including the twin parity pages. In order to recover the old

version of a data page after a transaction abort it is sufficient to XOR the contents of both parity

pages and the new data page: Dol d -- (P (_ p0) @ Dnew. When a parity group is dirty because

one of its data pages Di has been stolen from the buffer and another page Ds needs to be written

to disk, UNDO logging must be performed for Dj 4 then both parity pages P and P_ need to be

updated since when the group is dirty it is necessary to maintain a current parity page reflecting

the actual parity of the data on disk and an "old" parity page that would be used to recover the

uncommitted data page Di in case of a transaction abort. In all cases, when writing a data page

to disk the corresponding parity page(s) must be updated first.

4The before-image of the page in the case of page logging or of the modified record(s) in the case of record logging
must be written to a log file.

8

Do D1 DN-1 P P_

oooooo.°.o_oo°

Figure 6: The contents of a page parity group.

4.2 Twin Page Management

The twin parity pages are stored on different disks. This is necessary in order to be able to perform

transaction recovery following a disk failure. In order to identify which of the twin parity pages

contains the valid parity information, a timestamap is stored in the page header. The page with

the highest timestalnp contains the valid parity information. When an update is undone after a

transaction or system failure, the timestamp of the current parity page is reset to 0. Algorithm

Current__Parity shown in Figure 7 selects the current parity page. When a data page is updated

both parity pages are read and one of them is selected for modification. Then the parity is computed

and the modified parity page is written back to disk. In order to avoid reading both parity pages,

a bit map can be maintMned in main memory indicating which is the current parity page for each

of the parity groups in the database. However such a bit map may not survive a system crash.

Hence following a crash that destroys the map, algorithm Current._Parity will have to be used to

identify the current parity page and to reconstruct the bit map. In this case, two bits would have

to be used in the bit map for each parity group to code the three possible states: parity page P is

the current parity page, parity page pi is the current parity page or the information is not available

and algorithm Current_Parity has to be used. Following a system crash a background process

that runs during idle periods of the system can be initiated to reconstruct the bit map.

Each of the twin parity pages can be in one of four states: committed, obsolete, working or

invalid [12]. A parity page is committed when it contains the last committed parity update. It is

obsolete when it contains old committed parity information. It is in the working state when it has

been updated by an active transaction, and it is in the invalid state if the last transaction updating

it has aborted. Figure 8 shows the state transition diagram of the twin parity pages.

Current_Parity(pg)

begin

end

Read twin parity pages in parity group pg;

if Timestamp(P) > Timestamp(P') then

Current_Parity *-- P;

else
Current_Parity _- P';

Figure 7: Algorithm Current_Parity determines the current parity page.

C: committed; O: obsolete; I: invalid; W: working

Figure 8: State transition diagram of the twin parity pages.

4.3 Recovery from System Failure

Following a system crash we need to identify which transactions have to be backed out and which

pages have been modified on disk by those transactions. A Begin-Of-Transaction (BOT) record

needs to be written to a log file after the transaction begins and before it writes back any modified

pages to disk and an EOT record must be written to the log file when the transaction commits.

Modified database pages for which UNDO logging has been performed, can be recovered by reading

their before-images from the log. Modified database pages for which UNDO logging has not been

performed can be recovered using the parity pages. However information on which pages have been

10

written to the database without UNDO logging has to be saved in permanent storage. To solve

this problem, a technique similar to the one used in TWIST [13] can be employed. In TWIST,

a twin page scheme is used to store all database pages, no before-image logging is performed and

the same problem of identifying which pages to undo after a crash is encountered. The solution

makes use of a log chain which consists of pointers stored in the page headers that link together

pages modified by the same active transaction. In our case, only modified pages written back to the

database before EOT without UNDO logging will be part of the log chain. The head of the chain

though has to be logged along with the transaction id. I/O operations to maintain the log chain

can be hidden behind regular I/O requests and do not affect significantly system performance.

5 Performance Analysis

In order to evaluate the benefit of R.DA-recovery, we develop an analytical model to evaluate

transaction throughput for different algorithms. Since the cost of maintaining parity information

in a system with redundant disk arrays is relatively high, we do not advocate the use of RDAs

solely for the purpose of supporting transaction and crash recovery. We look at the benefit of

using RDA recovery in a system that already needs RDAs for the purpose of rapid media recovery.

We do this by comparing the throughput of systems using traditional recovery algorithms and

redundant disk arrays to systems with the same recovery algorithms in combination with RDA

recovery. We consider both page and record logging and in each case we examine two different

recovery algorithms and evaluate the improvement achieved by adding RDA recovery to them. As

far as storage is concerned, the extra cost involved in using RDA recovery is that of the twin page

scheme for the parity which is (100/N)% of the initial data storage cost.

RDA recovery reduces the amount of UNDO logging and hence is appropriate for systems using

update-in-place which implies -"ATOMIC propagation and a STEAL policy for page replacement.

We therefore restrict ourselves to the analysis of such algorithms. Within this class of algorithms

we examine both the FORCE and ".FORCE strategies for EOT-processing. For algorithms of the

type ".ATOMIC, STEAL, FORCE, only a TOC checkpointing policy makes sense. For algorithms

11

of the type -_ATOMIC, STEAL, -,FORCE, both ACCor TCC checkpoints could be used however

algorithms using ACC checkpointing were shown to outperform those using the TCC type 5 [14].

Hence we only look at the former type of checkpointing.

We use the same basic model as the one introduced by Reuter in his evaluation of the perfor-

mance of several database recovery techniques [14]. We assume that the system is I/O bound and

therefore we look only at the number of I/O requests required to perform a given operation. We

also assume that the system is running continuously with no periodic shutdown. This implies that

all cleanup activities required by the algorithm are accounted for in the cost calculations instead

of assuming they are performed by some background process or during shutdown periods.

The workload considered consists of a set of P transactions executing concurrently in the system.

Transactions are of two types: update or retrieval. The fraction of update transactions is f_. Each

transaction accesses s database pages. The fraction of accessed pages that are modified by an update

transaction is pu. To characterize the behavior of the database buffer, we use the communality C

which denotes the probability that a page requested by an incoming transaction is present in the

buffer. The number of page frames in the buffer is denoted by B. It is assumed that the buffer

is sufficiently large so that once a transaction has referenced a page, the page will remain in the

buffer until it is no longer needed by the transaction 6.

The cost of recovery after a system crash is denoted by ca and is measured by the number of

page transfers between main memory and the disk subsystem required to perform recovery. The

cost of executing a transaction is denoted by ct. The transaction throughput rt is defined as the

number of transactions processed during an availability interval. An availability interval T is the

period between two system crashes. Since all cost measures are evaluated in terms of number of

I/O operations, we assume that the availability interval is measured in units of page transfers T.

If checkpointing is used then the length of a checkpointing interval is denoted by I and is also

5Also TCC checkpointing contradicts our assumption of a continuously running system since it requires the

establishment of a quiescent point where no update transactions are present in the system.

_The page could stillbe replaced before the transactioncommits ifa STEAL policyisused, however ifitisreplaced

it willnot be rereferenced by the transaction.

length of availabilityintervalin seconds
7Mathematically, T can be defined as follows:T _ time to transfera page to/from disk in seconds

12

measuredinunitsofpage transfers.The costofgeneratinga checkpointisdenoted by cc.Assuming

thatthe crashoccursinthe middleofa checkpointinginterval,the number ofpage transfersavailable

forprocessingtransactionsin an availabilityintervalisT - cs- cc((T - c,- I/2)/I).Hence the

throughput isgiven by:

We assume that Ccisindependent of I. Hence the optima/checkpointing intervalcan be easily

derivedfrom the followingequation [14]:

drt / dcs)d--7= (i/c,)_--_(I - co�I) + (T - cs)(cd/2)_ = O. (i)

Let cr denote the cost of updating a retrieval transaction and cu that of an update transaction.

Then c_ can be expressed as follows:

c,= (i- f,,)c,+ f,,c,,.

c_ itselfincludestwo components: the costof readingpages that are not found in the database

buffer and the cost of writing back the replaced pages if they have been modified. Hence:

c, = s(l - C) + am(1 - C)pm, (2)

where Pm denotes the probabilitythat the replacedpage was modified and a denotes the number

of page transfersnecessaryto perform one writeto the disk array,a isequal to 3 or 4 depending

on whether or not the old data page isin the bufferat the time of writingthe new data. For c,,

we have two additionalcomponents which representthe costofloggingthe transaction(ct)and the

costof backing out the transaction(cb)in the case where an abort occurs.Hence:

c. = s(l - C) + as(l - C)p._ + ct+ pbCb,

where Pb denotes the probability of an abort.

(3)

5.1 Evaluation of the Probability of Logging

We consider a set of K pages that have been modified by active transactions and we compute the

expected value of the size of the subset of pages that can be written back to the database without

13

UNDO logging.N is the number of data pages in a parity group and S is the total number of data

pages in the database. We assume that the K pages are randomly chosen from the S pages in the

database. Note that by using data striping (tLa_ID) with a large striping unit or parity striping, any

sequentiality in database accesses will act in favor of our scheme by distributing the pages accessed

over distinct parity groups.

The parity groups in the database are numbered from 1 to S/N. Let Xi, 1 < i < S/N, be

the random variable whose value is 1 if one of the K pages is a member of parity group i, and 0

otherwise. Let X be the random variable denoting the number of parity groups that contain all K

pages. X is also the number of pages that can be directly written back to the database since one

page per parity group can be written back. We have:

stir

X= _'_Xi.
i----1

Since the K pages are assumed to be randomly chosen, each parity group has the same probability

of being accessed by those K page references. Hence the Xi's are identically distributed. Therefore,

the expected value of X is E[X] s/N= _,i=1 E[XI] = _E[X1]. Since X1 is a Bernoulli random variable,

E[X1] -- Pr(X1 --" 1) and E[X] = _(1-Pr(X1 = 0)),which can bewritten: E[X]-- _ 1-

Hence if K modified, "uncommitted" pages are to be written to the database, the probability of

having to log one of those pages is given by:

Pt = 1- E[X]/K = 1-
KN 1- (s)]" (4)

5.2 Page Logging

5.2.1 Algorithm of the Type -.ATOMIC, STEAL, FORCE_ TOC

With the FORCE discipline, the checkpoint is taken at the end of each transaction. The cost of

checkpointing is therefore accounted for in the cost of logging. In the model, we set cc = 0. Given

our assumption that pages are not rereferenced by the calling transaction after they have been

replaced in the buffer, the cost of writing and logging a page will be the same whether the page is

14

stolen from the buffer before transaction commit or whether it stays in the buffer until EOT and is

then logged and written to the database. Hence we will account for all the costs involved in logging

the pages and writing them back to the database as part of the cost of logging. This allows us to

set Pm- 0 in the expressions for cr and cu. The expression for cl is:

ct = 3 x spu + 4 X (2sp=) + 4 X 4

The first term is the cost of writing the pages back to the database. Each write to the disk array

costs three I/O operations since, with the FORCE discipline, the old data is kept in the buffer

until EOT for the purpose of UNDO logging. The second term is the cost of writing to the UNDO

and REDO log files. REDO information is needed only in the case where an operator error or

a system software error damages more than one disk in the disk array. The log files are stored

separately which makes reading the log to backout aborted transactions less costly. The last term

in the expression of cl is the cost of writing BOT and EOT records to each of the log files.

The probability of having to log a page with RDA recovery is dependent on the number K of

pages written back to the database by incomplete transactions. We assume that when a transaction

writes back a page to the database before committing, the other concurrent transactions are halfway

through writing their own modified pages. Therefore K is equal to half the total number of pages

modified by concurrent update transactions. Hence the probability of logging is given by Equation 4

in which K is replaced with s Psfup_,/2. With RDA recovery, the formula for the cost of logging

becomes:

c_ = (3 + 2pl)sp,_ + 4(spu + spupt + 4) + 4(pt - p_m,)

The major difference with cz is that UNDO logging has to be performed only when the parity

group is dirty, i.e., with probability Pt. The term 2pt is added to 3 to accounts for the fact that

when writing to a dirty parity group both parity pages need to be updated 9. The last term in the

expression of c[denotes the cost of writing the log chain header to the log. The header is normally

written along with the BOT record in the same page except when the first page written by the

s Page logging implies the use of page locking and hence the sets of pages modified by concurrent update transactions
are disjoint.

9We assume that log file pages and data pages are not mixed in the same parity groups.

15

transaction to the database has to be logged and not all pages updated by the transaction have to

be logged.

To evaluate cb we assume that a transaction aborts in the middle of processing its pages and

that the other concurrent update transactions have also logged half their modified pages. The

UNDO log has to be read up to the BOT record of the aborting transaction.

Cb= (P.42)(PA) + PA + + a

The first term is the number of before-images that have to be read from the log. The second term

is the number of BOT/EOT records to be read. The third term is the number of page transfers

to and from the database to undo the modifications performed by the aborting transaction and

the last term account for the writing of a rollback record. With KDA recovery the above formula

becomes:

c_ = (p_pzs/2)PA + (pl- p_P")PA + PA + (p.8/2)(6pl+ 5(I - pt))+ 4

In the first term the number of logged before-images to be read is now multiplied by Pt. The

second term is the expected number of log chain headers to be read from the log. The other major

difference is in the fourth term. It is due to the fact that, when recovering a page that has been

logged, up to six I/O operations might be necessary since its parity group may still be dirty 1°. On

the other hand, if the page has been written to the database without being logged, it is necessary

to read both parity pages in its parity group and the "new" data page and then overwrite the

database page with the old data and modify the state of the parity page from wor]dng to invalid

by resetting the timestamp in its header. Hence five I/O operations will be necessary in the latter

case.

After a system crash, only UNDO recovery needs to be performed. Hence the formula for cs

contains the cost of reading the UNDO log file up to the BOT record of the oldest transaction alive

at the time of the crash and then overwriting the modifications. The work of the oldest transaction

1°In this instance and in other instances in the evaluation, we use an upper bound for the costs involved in RDA

recovery in order to keep things simple. This will lead to a conservative estimate of the benefit of our method.

16

77300

_ 71600

g
h
P
U
t

1"t

High update frequency

65900 -

60200 -

54500 -

48800
0.0

I
I

I I I I I

0.2 0.4 0.6 0.8 1.0

Communality, C

High retrieval frequency

T
h
r
o
u

g
h
P
U

t

1"t

475800

399000-

322200-

245400-

168600-

91800
0.0

_RDA
I I I I I

0.2 0.4 0.6 0.8 1.0

Communality, C

Figure 9: Results for _ATOMIC, STEAL, FORCE, TOC

alive overlapped with the work of some committed transactions therefore the log records for half

the work of about 2Pfu transactions need to be read. Hence the expressions for c_ and c_ are:

c, = Pfu(spu + 2) + 4(Pfup_,s/2)

c_, = ef_,(spupl + 2(pt - p_P") + 2) + Pfu(p_,s/2)(4pl + 5(1 - Pt)) + S/N

The term S/N is an upper bound for the cost of reconstructing the bit map for the current parity

page.

We evaluate the algorithms in two different environments depending on the frequency of update

transactions. Figure 9 shows the throughput as a function of the communality C in a system with

high update frequency and in a system with high retrieval frequency. As expected the improvement

in throughput using RDA recovery is much more significant in the high update frequency environ-

ment. For the latter environment and for C = 0.9 the increase in throughput is about 42%. All the

values for the different parameters of the model, except for N, were taken from [14]. These values

are: B = 300, S = 5000, N = 10, P = 6, Pb ---- 0.01 and T = 5.10 6. For the high update frequency

environment, s = 10, f, = 0.8 and p, = 0.9 while for the high retrieval frequency environment,

s = 40, f_, = 0.1 and p_, = 0.3.

17

5.2.2 Algorithm of the Type -_ATOMIC, STEAL, ",FORCE, ACC

In this case, at EOT, before- and after-images of modified pages are written to the log but the

modified pages are not written back to the database. They remain in the buffer until they are

replaced. REDO recovery has to be performed after a system crash and ACCcheckpointing is used

to reduce the amount of REDO during crash recovery.

First we need to evaluate Pr_. To do so, we need to compute the number of transactions that

successively reference a page during its life in the database buffer. If we look at the stream of

references to a page by successive transactions we can see that with probability C the page is

referenced when it is in the buffer and with probability 1 - C it is referenced when it is not in the

buffer. Hence the number of references to the page during its life in the buffer follows a geometric

distribution with parameter C which implies that the average number of references to the page

while it is in the buffer is 1/(1 -C). Since the probability of a page being modified by a transaction

that references it is fup,,, the probability of a replaced page being modified during its life in the

buffer is I_:

p,n = 1 - (I- f_,p,,)I/(1-o)

The cost of logging is simply the cost of writing before- and aSter-images of modified pages and

the BOT/EOT records to the log:

ct -- 4(2spu ÷ 2).

With RDA recovery, pages that have been stolen from the buffer before EOT do not have to have

their before-images logged. Therefore we need to evaluate the probability Ps for a page being stolen.

The number of references that could cause a given page to be stolen is (1 - C)s(P - 1) and the

probability that any one of those references causes the replacement of the page is 1/(B - Cs).

Hence the formula for Ps is:

(1) (1-C)s(P-I)p, = 1 - 1 B -Cs

11The same equation for p,_ was derived in [14] using a slightly different axgument.

18

In the formulafor p_, the value of K is Psf_p,,ps/2. The before-image of a modified page will not

be logged with probability p,(1 -Pz). Hence the cost of logging with RDA recovery is:

= 4(p. + - p.(1 - pO)+ 2)+ 4(p -

For the cost of backing out a transaction one difference with the FORCE scheme is that the log

file contains both before- and after-images which will be read until the BOT record of the aborting

transaction is found. Another difference is that with probability C the modified pages to be undone

axe still in the buffer. Hence:

cb = 2 X (p,,s/2)(Pf,,) + Pf_, + 4p,,(s/2)(1 - C) + 4

With RDA recovery, the cost of transaction backout becomes:

eL = 2x (pt, s/2)(Pfu)+Pfu+Pfu(pt-p[spup'])+pu(s/2)((4+2pt)(1-C)(1-ps)+6pspt+5ps(1-p/))+4

The cost of performing a checkpoint for -_RDA and for RDA is given by:

cc = 4(npm + 2),

c'c = (4 + 2pt)(Bpm + 2).

To evaluate the cost of recovery after a crash, we assume that a crash occurs in the middle of a

checkpoint interval. All transactions executed since the last checkpoint have to be redone. Let rc

denote the number of transactions executed during a checkpoint interval, rc is given by rc = I/ct

and the expression for cs is:

Cs = (rc/2)ft,(ct/4 + 4spu) + P fu(ct/4 + 4(s/2)pu - 1)

The -1 term corresponds to the EOT record which is accounted for in ct/4 but is not read. The

cost of recovery from a crash with the P_DA recovery technique is:

c; = (r'd2)A(c_/4 + 4sp,,) + PA(c[/4 + (s/2)p_,(4(1 - p,) + 4pspt + 5ps(1 - pt)) - 1) + S/N.

The value of the optimal checkpointing interval I is obtained by plugging the expression for c_ in

Equation 1. This yields:

I = (2ctcc(T - Pf_,(ct + 4(s/2)p,,) - PA)/(f_(ct + 48p_))) 1/2.

19

T
h
r
0
U

g
h
P
U

t

rt

High update frequency

75700 -

70120 -

64540 -

58960 / _RDA
53380

47800 i i l I I I
0.0 0.2 0.4 0.6 0.8 1.0

Communality, C

High retrieval frequency

T
h
r
o
u

g
h
P
U
t

rt

399700-

337960-

276220-

214480

152740

91000

_RDA

I I I 1 I

0.0 0.2 0.4 0.6 0.8 1.0

Communality, C

Figure 10: Results for -ATOMIC, STEAL, _FORCE, ACC

The formula for I in the case of RDA recovery is derived in a similar fashion. The value of a in the

expressions of c_ and c_ is 4 for -_RDA and 4 % 2pl for RDA because with the -,FORCE discipline,

when replacement takes place the old version of the data is not available any more in the buffer.

Figure 10 shows the results for both environments. It can be seen that the improvement is

not significant in this case. However the interesting result is that while without RDA recovery,

the -,FORCE, ACC type algorithm outperforms the FORCE, TOC scheme, when RDA recovery

is used, the situation is reversed and the latter algorithm outperforms the former by a significant

margin.

5.3 Record Logging

In this section we look at recovery algorithms in which only modified records are logged. The

unit of transfer between main memory and secondary storage is still a page however, when logging

is performed, logged records are encapsulated into pages and then written to the log file. Some

additional parameters of the system need to be introduced for the analysis of record logging: d

denotes the number of update statements per transaction; r denotes the average length (in bytes)

of a long log entry such as a data record; e denotes the average length of a short log entry such

as a table entry; Ibc denotes the length of the BOT and EOT records; Ip denotes the length of a

2O

physical page; lh denotes the length of a log chain header. The values for the first five parameters

are taken from [14]. These values are: d = 3 for high update frequency environments and d = 8

for low update frequency environments, r - 100, e - 10, lbc -- 16 and lp = 2020. The value for lh

was set to 4. Assuming that each update statement causes one long log entry and that s > d, the

average length of a log entry can be derived [14]:

L=(dr+(s-d)e)/s.

5.3.1 Algorithm of the Type -.ATOMIC, STEAL, FORCE, TOC

With record logging, the locking granule can be less than a page. We assume that record locking

is used in order to enhance concurrency. This implies that the total number of pages modified by

a given set of P concurrent transaction is not the same as for the above algorithms for which page

locking was assumed. We will denote this number by su. An expression for su is derived in the

Appendix. The value of K in the expression of Pl is sJ2. We assume that group commit is used

so that log records from different transactions can be grouped in the same page and written to the

log. The derivations of the cost equations are similar to those in Section 5.2.1. We simply list the

equations without detailed explanation.

el -_

c_ =

Cb "-

C'b =

C$ --"

!

Figure

3sp_, + 4 x 2(21bc 4" 8pu(Ibc 4- L))/Ip

(3 + 2pt)_p. + 4(21b_+ _p.(tb¢+ L))/l_ + 4(21b_+ _p.(t,_ + L)p_+ (Ib_+ lh)(p_-- p;"°))/l,
P ft,(Ibc + 8pu(Ibc -4"L)/2)/lp + 4(p_,s/2) + 4

Pfu(Ibc + spu(Ibc -4-L)pl/2 + (Ibc + la)(Pt -- p_1'"))/Ij, + (p_,s/2)(6pt + 5(1 -- Pl)) + 4

P/.(21b_+ _p.(Ib_+ L))/l_ + 4P f.(p.,/2)
Pf.(2tb¢ + 8p.(Ib_+ L)pt + 2(tbo+ lh)(Pt -- pF'))/Z, + (Pf.p.,/2)(4p_ + 5(I - p_))

11 shows the throughput for the FORCE, TOC type of algorithms with and without RDA

recovery as a function of the communality in the buffer for the case of record logging.

5.3.2 Algorithm of the Type -.ATOMIC, STEAL, -"FORCE, ACC

The cost equations for this case can be derived using the results of Sections 5.2.2 and 5.3.1. The

value of K in the expression for Pl is s_,ps/2.

21

T
h
r
o
u

g
h
P
U

t

rt

High update frequency

215900

202840

189780

1767204

163660

150600
0.0

1102500

Ry T 905240

h
r
o
u 707980
g

P 510720
U
t

rt 313460

, 116200
0.2 0.4 0.6 0.8 1.O

High retrieval frequency

Communality, C

0.0

/ --RDA

i I] 1 I

0.2 0.4 0.6 0.8 1.0

Communality, C

Figure 11: Results for -,ATOMIC, STEAL, FORCE, TOC, in the case of record logging.

el = 4(2/bc + spu(lbe + 2L))/lp

c_ = 4(2/bc + sp_,(lbc + L(2 - p.(1 - Pt))) + (lbe + lh)(pt -- p[SP"P']))/Iv

cb = Pf.(ci/8) + 4p.(s/2)(1 - c) + 4
ctb = Pfu(c_/8) + pu(s/2)((4 + 2pt)(1 - C)(1 - p,) + 6pspl + 5p.(1 - Pt)) + 4

= + + Pf.(c /4 +
c'. = (rd2)f.(c_/4 + 4spu) + Pf.(c_/4 + p_,(s/2)(5ps(1 - PI) + 4(1 - p,(1 - pt))))

The equations for cc and c' are the same as in Section 5.2.2. The equations for c_ and c_ need to

be modified to account for the extra cost involved in logging modified records in pages stolen from

the buffer before EOT. The modified record of a stolen page needs to be written to the log before

the page can be replaced. Let Pl denote the proportion of replaced pages modified by uncommitted

transactions. We have Pi = s_/(B - Cs), where s_ is the number of pages in the buffer modified

by the concurrently executing transactions as seen by an incoming transaction, s_ is obtained by

Ireplacing P with P - 1 in the expression for s_. This gives the following equations for cr and c_,

Ithe equations for c,_ and cu are obtained in a similar fashion:

c_ = s(1 - C) + 4s(1 - C)(p,n + 2pi)

c'r = S(1--C)+4S(1--C)(prn+2pipt)

22

T
h
r
0
U

g
h
P
U
t

rt

1945400

1576520

1207640

838760-

469880-

101000
0.0

High update frequency
High retrieval frequency

1475600

I I I I I

0.2 0.4 0.6 0.8 1.0

T
h
r
o
u

g
h
P
u

t

7"t

1203100

930600

658100 -

385600 -

113100

0.0

_A

I I i I i

0.2 0.4 0.6 0.8 1.0

Communality, C Communality, C

Figure 12: Results for -',ATOMIC, STEAL, -',FORCE, ACC, in the case of record logging.

Figure 12 shows the throughput for the --,FORCE, ACC type of algorithms with and without

RDA recovery as a function of the communality in the buffer for both evaluation environments.

Unlike the page logging case, ",FORCE, ACC scheme performs much better than the FORCE,

TOC scheme for the range of values of C encountered in typical applications [15]. Also, for the

",FORCE, ACC algorithm, the increase in throughput achieved by using RDA recovery is higher

than for the same algorithm with page logging. This is the case because, with record logging, the

cost of logging the updates of a stolen page is high relatively to the cost of logging non stolen

pages and RDA recovery reduces that cost by eliminating the need for logging in most cases. For

example, for the high update frequency environment and for C = 0.9, the increase in throughput

is about 14%. The benefit of RDA recovery increases with the amount of work performed by each

transaction. Figure 13 shows the percent increase in throughput achieved by RDA recovery as'a

function of the number of pages accessed by each transaction (s) for the high update frequency

environment with C = 0.9.

23

-_FORCE,A CC, record logging

%
i
n
c
r
e
a
s
e

70.0 -

57.2 -

44.4-

31.6 -

18.8 -

6.0
5

I I I i

15 25 35 45

Number of pages accessed, s

Figure 13: Benefit of RDA recovery as a function of the number of pages referenced by a transaction.

6 Conclusions

In this paper, we have presented a scheme that uses redundant disk arrays to achieve rapid recovery

from media failures in database systems and simultaneously provide support for recovery from

transaction aborts and system crashes. The redundancy present in the array is exploited to allow

a large fraction of pages modified by active transactions to be written to disk and updated in place

without the need for undo logging thus reducing the number of recovery actions performed by the

recovery component. The method uses a twin page scheme to store the parity information so that

it can be efficiently used in transaction undo recovery. The extra storage used is about (lO0/N)%

of the size of the database, N being the number of disks in the array.

We used a detailed analytical model to evaluate the benefit of our scheme in a system equipped

with redundant disk arrays. We found that, in the case of page logging, a FORCE, TOCalgorithm

combined with RDA recovery significantly outperforms a FORCE, TOC algorithm without RDA

recovery as well as -,FORCE, ACC type of algorithms. In the case of record logging, we found that

a -,FORCE, ACC algorithm performs best and that the addition of RDA recovery to it improves

significantly its performance especially for transactions with a large number of updated pages.

24

Appendix

Derivation of the Formula for Su

s_ is the number of pages in the buffer updated by a set of P concurrent transactions. Let S (k)

denote the number of pages in the buffer updated by k update transactions. Since there are Pf_

update transactions executing concurrently in the system, we have su = S (Pf"). If we number the

Pfy update transaction from 1 to Pf_ in the order of their entry in the system, then when the

kth update transaction enters the system, it will find Cspu of the spy pages it needs to modify

already in the buffer. We make the assumption that out of those pages, Cspu × S(k-1)/B belong

to the k - 1 update transaction already executing in the system n. Hence, we have the following

recurrence equation:

S (k)- S(_-I)= spu(l - CS(k-*)/B)

Using S(*)= spy,we obtain sy = S(PI")=B(I-- (i--Cspy/B)PA).

References

[1] D. Bitton and J. Gray, "Disk shadowing," in Proceedings of the lgth International Conference

on Very Large Data Bases, pp. 331-338, Sept. 1988.

[2] J. Gray, B. Horst, and M. Walker, "Parity striping of disk arrays: Low-cost reliable storage

with acceptable throughput," in Proceedings of the 16th International Conference on Very
Large Data Bases, pp. 148-161, Aug. 1990.

[3] D. Patterson, G. Gibson, and R. Katz, "A case for redundant arrays of inexpensive disks

(RAID)," in Proceedings of the ACM SIGMOD Conference, pp. 109-116, June 1988.

[4] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, and I. Traiger,

"The recovery manager of the system 1_ database manager," ACM Computing Surveys, vol. 13,
no. 2, pp. 223-242, 1981.

[5] J. Kent and H. Garcia-Molina, "Optimizing shadow recovery algorithms," IEEE Trans. Soft-
ware Engineering, vol. 14, pp. 155-168, Feb. 1988.

[6] R. A. Lorie, "Physical integrity in a large segmented database," ACM Trans. Database Systems,
vol. 2, pp. 91-104, Mar. 1977.

[7] T. Haerder and A. Reuter, "Principles of transaction-oriented database recovery," A CM Com-
puting Surveys, vol. 15, pp. 287-317, Dec. 1983.

12Update transactions can share pages because record logging is used instead of page logging.

25

[8] M. Y. Kim, "Synchronizeddiskinterleaving,"IEEE Trans. Computers, vol. C-35, pp. 978-988,
Nov. 1986.

[9]

[10]

[Ii]

[12]

[13]

[14]

[15]

M. Livny, S. Khoshafian, and H. Boral, "Multi-disk management algorithms," in Proceedings of

the A CM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pp. 69-

77, May 1987.

K. Salem and H. Garcia-Molina, "Disk striping," in Proceedings of the IEEE International

Conference on Data Engineering, pp. 336-342, Feb. 1986.

M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout, "The design of XPRS," in Pro-

ceedings of the 14th International Conference on Very Large Data Bases, pp. 318-330, Sept.
1988.

K.-L. Wu and W. K. Fuchs, "Rapid transaction-undo recovery using twin-page storage man-

agement," in Proceedings of IEEE Compsac, pp. 295-300, Nov. 1990.

A. Reuter, "A fast transaction-oriented logging scheme for UNDO recovery," IEEE Trans.

Software Engineering, vol. SE-6, pp. 348-356, July 1980.

A. Reuter, "Performance analysis of recovery techniques," ACM Transactions on Database

Systems, vol. 9, pp. 526-559, Dec. 1984.

W. Effelsberg and T. Haerder, "Principles of database buffer management," A CM Transactions

on Database Systems, vol. 9, pp. 560-595, Dec. 1984.

26

